合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> R1336mzz(Z))純質(zhì)與POE潤滑油組成的混合物的表面張力測定
> 陽-非離子復(fù)合表面活性劑體系表面張力測定及基礎(chǔ)性能評價(二)
> 高速運(yùn)動的微小水滴撞擊深水液池產(chǎn)生的空腔運(yùn)動及形成機(jī)理(三)
> 溫度對甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(三)
> 炔屬二醇表面活性劑對環(huán)氧灌漿材料漿液性能、灌體的滲透性影響(一)
> ?液層模型:微重力條件下界面張力梯度驅(qū)動對流基本流動規(guī)律【研究成果】
> 不同濃度6∶2氟調(diào)磺酸的表面張力測定儀器及結(jié)果(一)
> 多種表面活性劑復(fù)配可降低界面張力
> 釹鐵硼鎳銅鎳鍍層表面張力的提高
> 乳化劑——水和油之間的調(diào)和劑
推薦新聞Info
-
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應(yīng)用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
溫度對水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——結(jié)果與討論、結(jié)論
來源:河南化工 瀏覽 692 次 發(fā)布時間:2025-04-14
2結(jié)果與討論
2.1純水氣—液界面行為的分子動力學(xué)模擬
選擇SPC、SPCE、TIP3P和TIP4P為水分子模型,分別在300、350、400、450、500和550 K的溫度下進(jìn)行MD模擬,盒內(nèi)水分子共有1 372個,選擇NVT系綜,截斷半徑是12 nm。通過模擬得到純水體系的密度分布、界面厚度和界面張力。
2.1.1密度分布
不同溫度下純水的初始密度如表2所示。
表2不同溫度下純水的初始密度
模擬分子數(shù)N=1 327,四種水分子模型分別在溫度T=300、350、400、450、500和550 K時,模擬得到的密度分布如圖4所示。從圖4可以看出,曲線可以劃分為三個部分,分別為汽相主體、液相主體以及氣—液界面層。隨著溫度的增加,液相主體密度逐漸降低,氣相主體密度逐漸升高,氣—液界面區(qū)域逐漸變寬。
(a)SPC(b)SPCE(c)TIP3P(d)TIP4P
將四種水分子模型模擬得到的不同溫度下的液相主體密度與實驗值比較,如圖5所示。由圖5可見,四種模型的模擬值和實驗值相比都偏低,且溫度越高,模擬值與實驗值的誤差越大;SPCE和TIP4P模型得到的液相密度與實驗值的誤差較小。
2.1.2界面厚度
根據(jù)“10-90”法則進(jìn)行計算,分別求得SPC、SPCE、TIP3P和TIP4P在300~550 K的界面厚度如圖6所示。
從圖6中可以看出,隨著溫度的增加,界面厚度在不斷增加,而且溫度越高增加幅度越大,其中TIP3P模型的界面厚度增長幅度最大。
圖5不同水分子模型的液相主體密度與實驗值比較
圖6純水體系的界面厚度
2.1.3界面張力
四種水分子模型分別在溫度T=300、350、400、450、500和550 K時,模擬得到界面張力,如圖7所示。從圖7中可以看出,隨著體系溫度的升高,界面張力降低,并且模擬值與實驗值之間誤差逐漸減小。SPCE模型得到的界面張力與實驗值的誤差較小。
圖7不同水分子模型的界面張力與實驗值比較
通過液相主體密度和界面張力的模擬結(jié)果可知,SPCE的模擬效果較好,所以在研究水—表面活性劑體系氣—液界面行為時,選擇SPCE模型。
2.2水—表面活性劑體系氣—液界面行為的分子動力學(xué)模擬
分別在300、350、400、450、500和550 K溫度下進(jìn)行MD模擬,盒內(nèi)水分子數(shù)為3 000個,兩側(cè)的十二烷基硫酸鈉數(shù)目為10,選擇NVT系綜,截斷半徑1 nm,庫侖力的截斷半徑為1.2 nm。模擬得到水—表面活性劑體系的密度分布、界面厚度和界面張力。
2.2.1密度分布
向純水中加入十二烷基硫酸鈉表面活性劑,水分子3 000個,十二烷基硫酸鈉20個,模擬得到300 K下水—表面活性劑體系的密度分布,如圖8所示。由圖8可見,對于只有水的體系來說,其密度變化基本是符合由汽相到液相逐漸增加的趨勢,而對于加入的表面活性劑十二烷基硫酸鈉的體系來說,其密度的變化情況與只有水的體系有明顯的不同。從圖8可以看出,在氣—液兩相的過渡區(qū)域,加表面活性劑的體系密度出現(xiàn)明顯的增長。
圖8水—表面活性劑體系的密度分布
2.2.2界面厚度
界面厚度取從水相體相密度的90%到表面活性劑體相密度的90%。模擬水分子數(shù)N1=3 000,十二烷基硫酸鈉數(shù)N2=20,在溫度T=300、350、400、450、500和550 K時,模擬得到界面厚度,將其與純水體系的界面厚度對比,如圖9所示。從圖9可以看出,水—表面活性劑體系的界面厚度隨溫度的增加而增加,而且和純水體系的界面厚度對比可知,水—表面活性劑體系的氣—液界面厚度明顯增大。同時,對純水體系和水—表面活性劑體系的界面厚度模擬值進(jìn)行擬合可分別得到式(4)和(5)。
d=-8.620 38+0.050 10T(4)
d=-8.697 14+0.084 23T(5)
式中:d為界面厚度,nm;T為溫度,K。
圖9水—表面活性劑體系與純水界面厚度對比
2.2.3界面張力
模擬水分子數(shù)N1=3 000,十二烷基硫酸鈉數(shù)N2=20,溫度T=300 K,水—表面活性劑體系的局部界面張力見圖10。由圖10可知,從汽相主體向液相過渡過程中,界面張力值逐漸增加,在氣—液界面區(qū)達(dá)到峰值;在液相主體又在零值附近波動。
圖10水—表面活性劑體系的局部界面張力
不同溫度下的水—表面活性劑體系的界面張力與SPCE模型的界面張力對比如圖11所示。
圖11水—表面活性劑體系與純水的界面張力對比
從圖11可以看出,水—表面活性劑體系的界面張力隨溫度的升高而降低,而且加入十二烷基硫酸鈉后水的界面張力明顯降低。對純水體系和水—表面活性劑體系的界面張力模擬值進(jìn)行擬合可分別得到式(6)和(7)。
γ=107.714 29-0.162 86T(6)
γ=92.872 380-0.139 54T(7)
式中:γ為界面張力,mN/m;T為溫度,K。
3結(jié)論
采用分子動力學(xué)模擬技術(shù),對水及其表面活性劑體系的氣—液界面行為進(jìn)行研究。結(jié)果表明,隨著溫度的升高,純水體系液相主體密度降低,氣—液界面厚度增大,張力逐漸減?。籗PCE模型與實驗值的誤差較小;十二烷基硫酸鈉—水混合體系與純水體系相比,氣—液界面厚度明顯增大,界面張力明顯減小,其隨溫度的變化情況和純水體系一致。





