合作客戶/
 拜耳公司  | 
 同濟(jì)大學(xué)  | 
 聯(lián)合大學(xué)  | 
 美國(guó)保潔  | 
 美國(guó)強(qiáng)生  | 
 瑞士羅氏  | 
相關(guān)新聞Info
- 
                            
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(二)
> 我國(guó)陶瓷墨水生產(chǎn)企業(yè)基本狀況以及國(guó)產(chǎn)墨水與進(jìn)口墨水性能的比較
> 煤油的界面張力多少合適,煤油表面張力與溫度對(duì)照表
> 有關(guān)表面張力儀產(chǎn)品優(yōu)點(diǎn)和參數(shù)說明
> 怎么算肥皂泡的表面張力?
> 表面張力儀分析氣潤(rùn)濕反轉(zhuǎn)劑對(duì)緩解煤層水鎖效應(yīng)、解吸速率影響(二)
> 東辛原油酸性活性組分油水界面張力、動(dòng)態(tài)界面擴(kuò)張流變性質(zhì)研究(二)
> 酯化度與分子質(zhì)量對(duì)果膠乳化性能、聚集體結(jié)構(gòu)、界面性質(zhì)的影響規(guī)律(一)
> 咪唑類離子液體對(duì)不同煤塵潤(rùn)濕性能的影響規(guī)律(上)
> 泡沫發(fā)生以及破裂機(jī)理|發(fā)泡劑在泡沫染整中的主要作用及類型
 
推薦新聞Info
- 
                            
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對(duì)礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對(duì)Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實(shí)驗(yàn)研究與應(yīng)用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實(shí)驗(yàn)研究的深度解析
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對(duì)L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
 
重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
來源:中國(guó)冶金 瀏覽 648 次 發(fā)布時(shí)間:2025-07-08
由于鋼液中合金化合物粒子的存在,使得非均質(zhì)形核的脫氧核心結(jié)構(gòu)不同于均質(zhì)形核,因此,非均質(zhì)形核生成臨界半徑脫氧產(chǎn)物時(shí),其所需要的臨界自由能變化ΔGhetero*與均質(zhì)形核也不同,這個(gè)差異可用關(guān)于兩相接觸角的函數(shù)f(θ)來彌補(bǔ),見式(5)和式(6)。兩相之間的接觸角θ越大,給形核造成的困難也越大。
	
夾雜物的形核與夾雜物和鋼液間的界面張力有關(guān),式(7)~式(9)為關(guān)于界面張力的函數(shù)??芍?,夾雜物與鋼液間的界面張力降低,臨界過飽和度S*降低,夾雜物的形核率升高。
	
式中:I為1 cm3的鐵液每秒形核率;kB為玻耳茲曼常數(shù),1.381×10-23J/K;A為不同氧化物對(duì)應(yīng)的常數(shù),氧化鋁的A為1032m-3/s。
	
圖9所示為界面張力γsl對(duì)于CaO-Al2O3型以及SiO2-MnO型夾雜形核率的影響,結(jié)果顯示,當(dāng)界面張力減少時(shí),這2種類型的夾雜的形核率也相應(yīng)提高。這說明,較小的界面張力有助于脫氧產(chǎn)物的生成,同時(shí)整個(gè)形核周期變短,也使得這些非金屬夾雜的尺寸分布變得更加平衡。
	
圖9形核率與界面張力的關(guān)系
	
夾雜物與鋼液間的界面張力不僅會(huì)影響夾雜物的形核率,還會(huì)影響形核半徑的大小。以Al2O3為例,Al2O3的形核半徑和鋼液與Al2O3的界面張力的關(guān)系可以用式(10)來描述。
	
式中:γ為半徑為r的Al2O3與鋼液的界面張力,N/m;γ0為r無窮大(零曲率)時(shí)鋼液與Al2O3的界面張力,2.328 N/m;Γ為表面過剩量,mol/m2。
	
脫氧產(chǎn)物形核半徑與界面張力的關(guān)系如圖10所示,可知,Al2O3和鋼液之間的界面張力會(huì)直接影響Al2O3的形核半徑。當(dāng)Al2O3和鋼液的界面張力降低時(shí),Al2O3的形核半徑也會(huì)相應(yīng)減小。因此,界面張力的降低會(huì)推動(dòng)形核的發(fā)生,也會(huì)縮小形核半徑的大小。本研究熱模擬試驗(yàn)的結(jié)果也顯示,隨著鋼液中初始氧、硫元素質(zhì)量分?jǐn)?shù)逐漸增加,重軌鋼中非金屬夾雜物的尺寸呈減小的趨勢(shì)。
	
圖10脫氧產(chǎn)物形核半徑與界面張力的關(guān)系
	
3.3界面張力對(duì)夾雜物聚集的影響
	
在鋼液中,非金屬夾雜物的形成、碰撞、團(tuán)聚、長(zhǎng)大和去除會(huì)對(duì)鋼水的潔凈度產(chǎn)生很大的影響。由于夾雜物在鋼液中的長(zhǎng)大行為有多種方式,如擴(kuò)散長(zhǎng)大、不同運(yùn)動(dòng)引起的團(tuán)聚碰撞以及夾雜物之間的相互作用等都將造成粒子在鋼液中復(fù)雜且不規(guī)律的運(yùn)動(dòng)。因此本文在僅考慮夾雜物擴(kuò)散長(zhǎng)大的前提下,對(duì)其運(yùn)動(dòng)進(jìn)行分析。鋼液中的脫氧產(chǎn)物的凝聚時(shí)間t見式(11)。可知,夾雜物的聚集時(shí)間與夾雜物的尺寸相關(guān),尺寸越小的粒子團(tuán)聚所需要的時(shí)間越少。與尺寸較大的粒子相比,小尺寸的粒子產(chǎn)生碰撞并聚合的概率更大,可進(jìn)一步形成更大尺寸的粒子,這些團(tuán)聚的粒子上浮速度加快,上浮且去除的效率更高。鄭立春及其團(tuán)隊(duì)的研究揭示,當(dāng)鋼液的表面張力以及其與夾雜物之間的界面張力下降時(shí),會(huì)導(dǎo)致鋼液與夾雜物的接觸角擴(kuò)大,從而使得夾雜物的聚集度提高,結(jié)果如圖11所示。本研究熱模擬試驗(yàn)數(shù)據(jù)也顯示,當(dāng)鋼中氧、硫質(zhì)量分?jǐn)?shù)升高時(shí),鋼渣反應(yīng)前后夾雜物的去除率會(huì)有所提高。
	
	
圖11氧化鋁夾雜潤(rùn)濕性和聚集度的關(guān)系
	
式中:X為橫截面半徑,X=r/3,cm;K為形狀因子,10~100;DV為體積擴(kuò)散率,cm2/s。
	
綜上,工業(yè)生產(chǎn)調(diào)研與小爐熱模擬試驗(yàn)均證明,鋼液中氧硫元素會(huì)對(duì)夾雜物的去除產(chǎn)生影響,鋼液中夾雜物總量并不完全與氧、硫元素質(zhì)量分?jǐn)?shù)呈正比關(guān)系。鋼廠在冶煉重軌鋼的過程中,不應(yīng)以超低硫、超低氧元素含量為目標(biāo),而應(yīng)利用表面活性元素對(duì)氧化物夾雜在鋼液中運(yùn)動(dòng)的影響,在鐵水預(yù)處理過程中適當(dāng)減少脫硫劑的使用或在轉(zhuǎn)爐渣料中減少石灰成分,以保證LF進(jìn)站前鋼中含有一定量的硫元素。初步建議精煉時(shí)鋼液中硫質(zhì)量分?jǐn)?shù)約為0.014%,氧質(zhì)量分?jǐn)?shù)約為0.003%,更易于脫氧產(chǎn)物的形核、團(tuán)聚與運(yùn)動(dòng)上浮。
	
4結(jié)論與展望
	
1)鋼中氧、硫元素含量的提高對(duì)鋼渣反應(yīng)過程中夾雜物去除有顯著的效果。固定鋼中全氧質(zhì)量分?jǐn)?shù),隨著初始硫質(zhì)量分?jǐn)?shù)的升高,鋼渣反應(yīng)30 min后,終點(diǎn)硫質(zhì)量分?jǐn)?shù)可降到0.002 6%;固定鋼中硫質(zhì)量分?jǐn)?shù),隨著全氧質(zhì)量分?jǐn)?shù)的升高,終點(diǎn)全氧質(zhì)量分?jǐn)?shù)可降到0.001 4%以下。
	
2)在全氧質(zhì)量分?jǐn)?shù)約為0.001 2%的前提下,鋼中硫質(zhì)量分?jǐn)?shù)從0.007%上升到0.016%時(shí),夾雜物的去除率從10%上升到60%左右;在鋼中硫質(zhì)量分?jǐn)?shù)為0.007%的前提下,鋼中全氧質(zhì)量分?jǐn)?shù)從0.001 2%上升到0.004 4%,夾雜物的去除率從10%上升到70%左右;夾雜物的平均尺寸隨著鋼中氧、硫質(zhì)量分?jǐn)?shù)的升高呈減小的趨勢(shì)。這是由于氧、硫質(zhì)量分?jǐn)?shù)增加使鋼液表面張力及其與夾雜物間的界面張力降低,夾雜物的形核率增大、形核半徑減小,小尺寸的夾雜物粒子更易于團(tuán)聚長(zhǎng)大并從鋼液中上浮去除。
	
3)鋼廠可在保持渣成分穩(wěn)定、鋼液溫度降幅不大且精煉時(shí)長(zhǎng)穩(wěn)定的情況下,不必一味追求超低硫的指標(biāo),在LF化渣前控制硫質(zhì)量分?jǐn)?shù)到0.014%、氧質(zhì)量分?jǐn)?shù)到0.003 0%,可提高鋼中非金屬夾雜物的去除率,同時(shí)降低夾雜物尺寸。
	
4)由于硫化物主要是在鋼液凝固過程中析出,本文注重研究熔融金屬中表面活性元素對(duì)脫氧產(chǎn)物的影響,因此未將硫化物夾雜一同統(tǒng)計(jì)分析。國(guó)內(nèi)對(duì)重軌鋼夾雜的研究一般傾向于深脫硫以減少鑄坯中硫化物的析出。下一步,作者將繼續(xù)開展熱模擬試驗(yàn),對(duì)夾雜物成分變化做更深一步的探究,同時(shí)考慮脫氧產(chǎn)物與凝固析出物,研究初始氧、硫含量對(duì)硫化物夾雜、氧硫復(fù)合夾雜的影響,從而得到LF精煉進(jìn)站前氧、硫質(zhì)量分?jǐn)?shù)合理的控制范圍。
	





