合作客戶/
 拜耳公司  | 
 同濟大學  | 
 聯(lián)合大學  | 
 美國保潔  | 
 美國強生  | 
 瑞士羅氏  | 
相關(guān)新聞Info
- 
                            
> 合成脂質(zhì)體類姜黃素納米粒子的自組裝——結(jié)果和討論
> 表面張力儀測試原理及各種測量效果
> 表面張力儀的功能
> 可拉伸復合單層電極用于低壓電介質(zhì)執(zhí)行器——結(jié)論、致謝!
> 表面張力儀的清潔與否對所測數(shù)據(jù)有何影響?
> 消泡劑原理:改變泡沫的表面張力而使小氣泡集合成為大氣泡
> Delta-8臨界膠束濃度對于藥物在生物體內(nèi)的增溶性的重要性研究——結(jié)果和討論
> Delta-8臨界膠束濃度對于藥物在生物體內(nèi)的增溶性的重要性研究——實驗部分
> 粘合劑種類有哪些?
> 蛋白質(zhì)外聚物中多糖的比例——結(jié)論、致謝!
 
推薦新聞Info
- 
                            
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
 
水面上的物體吸引或排斥的問題?
來源:知乎 阿黃sweetgirl 瀏覽 2198 次 發(fā)布時間:2021-07-23
容易想象,一般地,浮在水面上的物體距離較近時會有明顯的相互靠近的趨勢。例如,在有水的盆子里放入一些泡沫塑料顆?;蛐∧緣K(小木屑也行),它們會有明顯的聚集在一起的趨勢,且會聚集到盆子邊緣。但進一步實驗就會發(fā)現(xiàn)一些奇怪的現(xiàn)象。
	
若水盆的水足夠多,以至于水的液面高過了盆子邊緣,盆里的泡沫塑料就不會貼著盆子了,而且反而盆子邊緣會對泡沫塑料產(chǎn)生一種排斥作用。
	
于是猜測吸引或排斥與液面形狀有關(guān)。一般地,水會在浮在水面的物體的接觸面上“爬”一點,就是浸潤,于是再做實驗:使物體和水不浸潤。由于手頭沒有蠟,我用硬塑料卡片來模擬非浸潤。卡片密度比水大,躺放水面上的時候,是水的張力托住了卡片。于是水與卡片接觸的位置比水面低,這就模擬了一個非浸潤的情形;而容器壁的非浸潤也很好模擬,如上段所述,只要把水裝到比容器口高就行。
	
如此觀察浸潤與非浸潤物體之間(容器壁也可看作物體)的吸引與排斥情況,得出結(jié)論:
	
浸潤與浸潤間:相互吸引
	
浸潤與非浸潤間:相互排斥
	
非浸潤與非浸潤間:相互吸引
	
為何會出現(xiàn)這樣的現(xiàn)象?能否嚴格地用數(shù)學證明并推導出相關(guān)等效力的公式?
	
解答:
	
終于抽點時間完成這一問題,關(guān)于所謂的數(shù)學推導我會附上參考文獻。在這兒只是做科普定性分析。先說結(jié)果,樓主的結(jié)論是完全正確的,其原因是親疏水物體在水面上引起表面張力的對稱性變化。
	
我們由水面上兩個球形的物體做理想分析,現(xiàn)在先看親水的球形的物體在水面上使水面升高的情形。如圖1所示,親水物體由于其毛細作用,附近水面上升,不過水面升高后以指數(shù)函數(shù)在兩側(cè)下降,其影響距離大致為毛細作用力的距離,即2.7 mm。大于2.7 mm時,重力與表面張力相比重力占據(jù)主導地位,液面幾乎不再上升。
	
 
圖1親水物體使周圍水面升高,影響范圍約為2.7mm,此時液體表面張力垂直向下
	
下面開始考慮兩個親水物體。如圖2所示,兩個親水的物體距離很遠時,各自引起水面上升,由于每個只能影響2.7 mm的區(qū)域,所以互不影響。
	
 
圖2當親水球體距離很大時,每個表面張力的合理都向下,互不影響
	
這時,讓兩個親水的物體緩慢靠近,當一個處于另外一個的毛細作用力范圍時,由于毛細作用的相互耦合作用,兩個球形顆粒之間的液面會比兩側(cè)要高,這就打破了原來每個球形顆粒所受液體表面張力的對稱性,使表面張力的合力不再是垂直向下。出現(xiàn)了水平方向的分力,表現(xiàn)為相互吸引,如圖3。
	
 
圖3兩個親水物體相互靠近時,互相毛細作用下,中間液面比兩側(cè)較高,表現(xiàn)為相互吸引
	
同樣的分析也適用于疏水顆粒之間,如圖4所示,疏水的顆粒使周圍的液體液面下降,作用范圍同樣為2.7 mm,液面從顆粒向兩側(cè)以指數(shù)函數(shù)上升。
	
 
圖4單個疏水顆粒的表面張力合力向上
	
當兩個疏水顆粒距離較遠時,毛細作用力互不影響,不再畫出。但是一旦相互靠近,同樣的作用下,毛細作用力的耦合作用使顆粒之間的液面要比兩側(cè)都低,這同樣打破了原來單個顆粒兩側(cè)表面張力的對稱性,出現(xiàn)了水平方向上的合力,其效果使之相互吸引,如圖5所示
	
 
圖5兩個疏水顆粒在水平表面張力分力下相互吸引
	
那么一個親水顆粒和一個疏水顆粒呢?
	
當其距離很遠時,互不影響,如圖6所示。
	
 
圖6親疏水顆粒距離較遠,各自所受表面張力時對稱的,沒有水平分力
	
當其相互靠近時,親水的顆粒的毛細作用力使疏水的顆粒附近液面升高。疏水的顆粒使親水的顆粒附近的液面下降,其效果如圖7所示。這同樣打破了原來表面張力的對稱性,然而這時出現(xiàn)的表面張力為互相排斥。
	
 
圖7親水疏水顆粒相互使液面變化,打破原來所受表面張力的對稱性,出現(xiàn)相互排斥的表面張力
	
其規(guī)律是:親水的物體使液面升高,親水的物體之間靠近有加強作用,使中間的液面比兩側(cè)要高。同理,疏水的使中間液面更低。而這兩者都表現(xiàn)為相互吸引。
	
親水的使疏水的固體附近液面沒那么低,疏水的使親水的物體附近液面沒那么高,表面為相互排斥。
	
定量分析參考文獻為:
	
Peter A.Kralchevsky,Nikolai D.Denkov.“Capillary forces and structuring in layers of colloid particles”Current Opinion in Colloid&Interface Science 6(2001).383-401.
	
2.R.Di Leonardo,1 F.Saglimbeni,2 and G.Ruocco.“Very-Long-Range Nature of Capillary Interactions in Liquid Films”Phys.Rev.Lett.100,106103(2008)





