新聞中心Info
合作客戶/
 拜耳公司  | 
 同濟大學  | 
 聯合大學  | 
 美國保潔  | 
 美國強生  | 
 瑞士羅氏  | 
相關新聞Info
- 
                            
> 瀝青質及其亞組分與烷基苯磺酸鈉水溶液在降低IFT中的協同機理(二)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關系(三)
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(一)
> 表面張力儀的三大功能
> 納米乳液的類型、制備、粒徑分布、界/表面張力、接觸角和Zeta電位
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——摘要、前言
> 高鐵/汽車用T700級碳纖維環(huán)氧樹脂的黏度表面張力、微觀浸潤性研究
> 什么是響應性表面活性劑,響應性表面活性劑的種類、結構與應用領域
> 桐油基衍生物鈉鹽的表面張力、CMC值測定、乳液穩(wěn)定性、固化膜性能測試(二)
> 馬來酸酐為聯接劑,合成Gemini非離子表面活性劑的表面性能測試
 
推薦新聞Info
- 
                            
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點的制備、表面張力及對L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
 
新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(二)
來源:功能材料 瀏覽 420 次 發(fā)布時間:2025-09-03
2結果與討論
	
2.1 PAVE-5和PGVF-6紅外結構表征
	
通過紅外光譜對所制得功能材料的官能團化學狀態(tài)進行表征分析,圖2(a)和2(b)分別為PAVE-5和PGVF-6及其原料的紅外吸收光譜圖。PAVE-5和PGVF-6譜圖中,能夠清晰觀察到處于2960cm-位置的CH3反對稱伸縮吸收峰,處于2930和2860cm-1的CH2伸縮吸收峰,處于1720cm-位置的酯基C=O伸縮吸收峰,處于1256cm-1位置的C-O-C伸縮吸收峰,和處于1090和1010cm-位置的Si-O-Si吸收峰,而原本SH-POSS處的S-H吸收峰消失,VDMS、APEG400、APEG750和2-壬烯酸甲酯的單體C=C伸縮吸收峰也消失,表明PAVE-5和PGVF-6制備成功。
	
2.2 PAVE-5和PGVF-6核磁共振氫譜表征
	
采用核磁共振氫譜對所制備復合材料的化學結構進一步表征分析。圖3為PAVE-5以及其原料的核磁共振對比圖。PAVE-5譜圖中,SH-POSS的-SH質子氫吸收峰已經消失,接枝成功的APEG400烯烴雙鍵的質子氫吸收峰已經明顯消失,末端連接的-OH質子氫吸收峰在5.32x10-6處;同樣反應成功的2-壬烯酸甲酯單體,烯烴雙鍵的質子氫吸收峰也同樣消失不見,連接O的末端烷烴-CH3質子氫吸收峰處于3.75x 10-6的位置;最后成功反應的VDMS單體,烯烴雙鍵的質子氫吸收峰也已經消失,Si上連接的所有甲基CH3分別處在0.09x10-6和0.14x10-6處,可以得知PAVE-5成功合成。
	
圖4為PGVF-6以及其原料的核磁共振對比圖。PGVF-6譜圖中,SH-POSS上的-SH質子氫吸收峰已經消失,接枝成功的APEG750單體,烯烴雙鍵的質子氫吸收峰已經消失,末端連接的-OH質子氫吸收峰在5.21times 10^{-6}處;同樣反應成功的2-壬烯酸甲酯單體,烯烴雙鍵的質子氫吸收峰也同樣消失不見,連接O的末端烷烴-CH3質子氫吸收峰處于3.72x10-6的位置,末端烷烴-CH3的質子氫吸收峰在0.88x10-6處;最后成功反應的VDMS單體,烯烴雙鍵的質子氫吸收峰也已經消失,后續(xù)Si上連接的所有甲基-CH3分別處在0.12x10-6和0.08x10-6處,可以得知PGVF-6雜化材料成功合成。
	
3硬質聚氨酯泡沫塑料的性能
	
泡沫穩(wěn)定劑在硬質聚氨酯泡沫的形成過程中起到關鍵作用,對泡沫的壓縮強度有顯著影響。通過表2可以得知,添加PGVF-6的硬質聚氨酯泡沫壓縮強度最高。首先,這可能是由于PGVF-6接枝的APEG750含有-OH結構,使得泡沫穩(wěn)定劑均勻分散在多元醇中,且能夠與異氰酸酯反應,進而使得反應充分進行,泡沫泡孔均勻細致;其次,接枝的聚硅氧烷鏈段有助于泡沫穩(wěn)定劑的表面鋪展,進而使得表面張力降低,得到的泡沫泡孔更細膩;最后,由于泡沫穩(wěn)定劑分散均勻,反應充分,使得其在泡沫結構中形成穩(wěn)定的POSS納米均勻網絡結構,具有較好的支撐能力,從而使得泡沫自身抗壓縮性能增強。
	
表2添加不同種類泡沫穩(wěn)定劑硬質聚氨酯泡沫的壓縮強度
	
4硬質聚氨酯泡沫壓縮性能的影響機理
	
4.1硬質聚氨酯泡沫泡孔結構對壓縮性能的影響
	
4.1.1硬質聚氨酯泡沫塑料的表觀結構
	
泡沫穩(wěn)定劑的存在對于硬質聚氨酯泡沫性能影響在宏觀上有著十分顯著的體現。圖5是添加不同種類的泡沫穩(wěn)定劑后制樣得到的硬質聚氨酯泡沫橫截面的數碼照片。結果表明,接枝APEG鏈段的PAVE-5和PGVF-6泡沫穩(wěn)定劑所制備的聚氨酯泡沫RPU-3和RPU-4,其泡孔結構相較于市售產品所制備的聚氨酯泡沫展現出了更加細膩均勻的泡孔結構,而市售產品所形成的泡沫則表現出較為粗糙且孔徑不均勻的泡孔結構。這表明親水結構有利于泡沫穩(wěn)定劑均勻分散在多元醇中并使得反應充分進行,泡孔尺寸細小致密,有利于改善硬質聚氨酯泡沫的壓縮性能。
	
4.1.2硬質聚氨酯泡沫塑料的微觀結構
	
聚氨酯泡沫的微觀結構特征會顯著宏觀上的應用性能,因此對添加不同種類泡沫穩(wěn)定劑的聚氨酯泡沫的SEM進行了測試,結果如圖6所示。通過SEM可以得知,5種硬質聚氨酯泡沫的泡孔大小分布存在明顯差距。添加國產-1泡沫穩(wěn)定劑的泡沫泡孔較大且不均勻,添加進口-2泡沫穩(wěn)定劑的泡沫泡孔雖然分布有所改善,但仍然存在較大的泡孔結構。PAVE-5和PGVF-6泡沫穩(wěn)定劑的泡沫其泡孔結構相較于前面兩者得到了明顯的改善,泡沫孔徑減小,且尺寸分布更加均一,沒有明顯的大孔徑泡沫存在,其中RPU-4展現出了更加致密細小且分布均勻的泡孔結構。這說明含-OH的親水性結構使得泡沫穩(wěn)定劑在硬質聚氨酯泡沫中分散更加均勻,反應更加均勻有效。泡沫穩(wěn)定劑與這種均一且細小致密的泡沫結構通常會使得聚氨酯泡沫展現出更高的壓縮強度,這主要是由于在受壓時,泡沫的細胞壁會發(fā)生屈曲行為,這種細小致密且分布均勻的孔徑能夠有效地吸收和分散應力,避免薄弱點的形成從而有效提高聚氨酯泡沫的抗壓縮性能。
	
新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(一)





